翻訳と辞書
Words near each other
・ Upper Big Tracadie
・ Upper Bighouse
・ Upper Birchwood
・ Upper Black Eddy, Pennsylvania
・ Upper Black Eddy–Milford Bridge
・ Upper Blackville, New Brunswick
・ Upper Blandford, Nova Scotia
・ Upper Blue Licks, Kentucky
・ Upper Bluff Historic District
・ Upper Boat
・ Upper Boat Studios
・ Upper Boddington
・ Upper Bohn Lake
・ Upper Borough Walls, Bath
・ Upper Borth
Upper bound theorem
・ Upper Branch, Nova Scotia
・ Upper Brandon Plantation
・ Upper Breakish
・ Upper Breinton
・ Upper Bridge
・ Upper Brittany
・ Upper Broadheath
・ Upper Broghindrummin
・ Upper Brook Street Chapel, Manchester
・ Upper Brookfield, Queensland
・ Upper Brooklyn
・ Upper Brookville, New York
・ Upper Broughton railway station
・ Upper Brownlee School


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Upper bound theorem : ウィキペディア英語版
Upper bound theorem
In mathematics, the upper bound theorem states that cyclic polytopes have the largest possible number of faces among all convex polytopes with a given dimension and number of vertices. It is one of the central results of polyhedral combinatorics.
Originally known as the upper bound conjecture, this statement was formulated by Theodore Motzkin, proved in 1970 by Peter McMullen, and strengthened from polytopes to subdivisions of a sphere in 1975 by Richard P. Stanley.
==Cyclic polytopes==
(詳細はconvex hull of ''n'' vertices on the moment curve (''t'', ''t''2, ''t''3, ...). The precise choice of which ''n'' points on this curve are selected is irrelevant for the combinatorial structure of this polytope.
The number of ''i''-dimensional faces of ''Δ''(''n'',''d'') is given by the formula
: f_i(\Delta(n,d)) = \binom \quad \textrm \quad
0 \leq i < \left()
and (f_0,\ldots,f_" TITLE="\frac">)-1}) completely determine (f_" TITLE="\frac">)},\ldots,f_) via the Dehn–Sommerville equations. The same formula for the number of faces holds more generally for any neighborly polytope.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Upper bound theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.